The SED Virtual Machine Environment: What is it and What Does it Do?

11/1/2011 Catherine Corlan

Some Initial Concepts

- A Virtual Machine Environment is
 - A "hypervisor", running on physical server(s), which maintains multiple VMs
 - Customers effectively get their own machine
- Characteristics of a Good Candidate for Virtualization
 - Uses < 30% of Server Resources (CPU, Memory, I/O)
 - OR Usage is strongly "bursty" higher utilization for 5
 - 15% of the time
- Poor Candidates for Virtualization can still be good candidates for larger Cloud environments

VME Advantages

- High availability: separating the HW/SW layers
 - HW can be reset, repaired or upgraded with no VM downtime, provided the facility has the spare cycles
- Multiple, Specialized VMs instead of 1 machine running all processes
 - Improve Work Processes
 - Even small projects can now have multiple machines, separating Development & Test from Production
 - Improve Security Posture
 - E.g., separate DB VM, mounted read-only in the public zone: if you get hacked, your data is still safe
- Reduced Paperwork
 - We handle your security plan and business case
 - We help you meet Code 700 requirements NAMS registration, STRAW Registration, Port 80 waivers, etc.
- Institutionally, we save on HW costs and reduce our raisedfloor footprint (lower electricity, cooling)

SED VME Purpose

- Provide Operational Environment for 660 & 690
 - Solve the computer space problem associated with moving to Bldg 34, losing Bldg 2
- Extra capacity to enable the Directorate to
 - Consolidate HW servers
 - Prototype 'Cloud' computing
 - Infrastructure as a Service (bare machine)
 - Platform as a Service (machine + installed OS)
 - PaaS plus SA support for installation & configuration
 - Software as a Service (provide, e.g., a server running MatLab for a large number of users)
 - Variation: adding users to Division-level Web servers, DB servers, etc.
 - Work out policies & procedures for shared environment with maximal customer control

VME Design: Infrastructure


Hardware

- 5 Dell ESX servers, each with 16 CPUs running at 2.9GHz, 128
 GB Memory
- NetApp SATA RAID, 14TB, running SnapMirror to B32 back-up
- Big IP to provide security & load balancing on public-facing VMs
- Network: On CNE (10 Gb uplink to core), uses the Public Zone
- Planning to add SAN & SAS Disk this year

Software

- VMware hypervisor: Resource Scheduler, vMotion, High Availability
- Red Hat Satellite Server (automatically pushes SW updates)
- Red Hat Linux: infinite licenses per machine; our preferred OS
 - Also running SUSE and Windows VMs

VME Diagram

Current Status

- Successful, stable operational environment with good performance
 - Running 93 VMs, ~40% Capacity; Looking for more customers
- 99.97% Uptime (1 malicious shut-down, 6 hrs)
- Preliminary performance benchmarks show no significant difference in performance between our VM and a comparable dedicated system in the NCCS
- Customers include HEASARC, Swift, SED Website
- FISMA Low; cooperating with new FISMA Moderate VME in B32/C101 for MOCs

Lessons Learned

- It Works, and saves on equipment costs & utilities.
- Multiple types of Disk are necessary
- High Performance depends on configuration details
 - OS Kernel tweaks, VM Memory handling
 - This argues for limiting OS flavors when there are only a few physical machines
- High Availability requires lots of idle cycles
 - Looking at 2-tier pricing, discount for risk of less availability
- VMware's vMotion requires same instruction set CPUs to function – limits refresh options
- SA Support Levels: if the machines are not clones, SA support *does not* scale
 - Effort ~ #VMs => Division-level special-purpose VMs to reduce proliferation & control costs

Customer Service

- Migration Process
 - Initial meeting to understand the customer requirements, design VM solution
 - Take advantage of virtualization to improve their workflow
 - Encourage VMs with the minimum resources needed (CPU, memory) to accomplish the job effectively
 - VMware locks up the allocated resources whether or not they are used
 - Largest VM is 4 CPUs, 8 GB mem; start with 1 CPU, 1 GB mem
 - 1 work-week to set up & configure machines for initial log-in
 - Additional time if NAMS, Port 80 Waivers, etc. are required
- 8 X 5 Customer Support (unless there are extraordinary circumstances)
 - Phone & email contact (gsfc-sedvmehelp@lists.nasa.gov); use issue tracking
 - SAs from the Divisions served allows support to be culturally customized

Cost Model

- In Development
- Designed to cover expenses
- Bill proportional to usage, but bill in advance => Usage Levels (low, med, high), with potential for quarterly adjustment if the usage level is badly wrong.
- Charge = (CPU cost/GHz * GHz Usage Level)
 - + (Disk Cost/GB * Disk Allocation)
 - + (Operational Expenses per VM * #VMs)
 - + (SA Cost * SA Usage Level)
- Divisions pay for multi-project VMs, i.e., Division-wide Web Server, MySQL Server, ftp Server...
- Issues: Project lifecycle budgets, making multi-VMs affordable

Outlook & Plans

- Adding Disk to increase our flexibility
- Intend to develop Amazon-like web interface to let customers know pricing, availability in advance
 - Problems: customers don't know to separate their processes into multiple VMs; customers want more resources than they need
- Currently looking for customers; adding about 1/week
- Considering SaaS for MatLab, IDL
- Looking at scalability, performance: lessons learned to help get Local Cloud right